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SUMMARY 

A smoothing technique is applied to improve the stability of a semi-implicit time integrator for the three- 
dimensional shallow water equations. In this method the terms involving the vertical direction are treated 
implicitly. The stability condition on the time step depends only on the horizontal mesh sizes; therefore in 
the horizontaldirection a smoothing operator is added. Owing to the smoothing, the maximally stable time 
step increases considerably while the accuracy is hardly affected. Moreover, it turns out that the smoothing 
operator is efficient on vector and parallel computers. 
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1. INTRODUCTION 

In numerical analysis we distinguish explicit and implicit time integrators for partial differential 
equations. It is well known that implicit methods are in general stable for any time step but 
cannot exploit the facilities of vector and parallel computers as well as explicit methods do. On 
the other hand, explicit methods impose a severe restriction on the time step and therefore the 
time step is not dictated by accuracy considerations. To improve the stability of explicit methods 
we will use smoothing techniques. 

Smoothing techniques are frequently applied in numerical methods. Usually the smoothing 
technique consists in applying a matrix S to some vector F. The aim is to reduce the magnitude of 
the high frequencies occurring in the Fourier expansion of the vector to be smoothed without 
affecting the lower frequencies too much. A simple example of an rn x rn smoothing matrix S is 
given by G = SF, where 

G , = F , ,  G i = a ( F i - , + 2 F i + F i + , ) ,  i = 2 , .  . . ,m-1, Gm=Fm, (1) 

with Fi and Gi denoting the components of the vectors F and G respectively. 
In this paper our starting point is the semi-implicit time integrator that has been developed for 

the linearized three-dimensional shallow water equations (SWEs).' In this method only the 
vertical terms are treated implicitly. For this method we are faced with a CFL stability condition 
that depends on the horizontal mesh sizes Ax and By. For small values of Ax and Ay this time step 
restriction may be more severe than necessary for accuracy considerations. Therefore we will add 
a smoothing operator in the horizontal direction to make the stability condition due to the 
horizontal mesh sizes less restrictive. 

027 1-209 1 /9 I /050475-16$08.00 
0 1991 by John Wiley & Sons, Ltd. 

Received August 1989 
Revised April 1990 



476 E. D. DE GOEDE 

The above-mentioned time integrator can be considered as a method in which an implicit 
smoothing operator already in the vertical direction. The smoothing in both horizontal and 
vertical directions may be interpreted as a preconditioning of the right-hand side of the 
semidiscrete shallow water equations. It will be shown that the maximally stable time step 
increases considerably when the smoothing operator in the horizontal direction is applied. The 
time step for the stabilized time integrator is now dictated by accuracy considerations, as it 
applies to implicit methods. Moreover, the stabilized time integrator can be implemented 
efficiently, as will be shown in the experiments. The efficiency of this method will be tested on 
various domains. In the experiments we will use a rectangular domain representing the North Sea 
and an irregular domain representing the IJsselmeer. The IJsselmeer is the largest lake in The 
Netherlands. 

The technique of stabilizing explicit time integrators by right-hand-side smoothing has been 
applied by Wubs for the numerical solution of the two-dimensional shallow water equations.’ An 
overview of various smoothing techniques has been presented by Van der H o ~ w e n . ~  

Section 2 provides the theory for the smoothing. In Section 3 we describe the semi-implicit time 
integrator for the shallow water equations. In Section 4 the smoothing is applied to stabilize this 
time integrator. Section 5 is devoted to the implementation of the smoothing matrices. Finally, in 
Section 6 we show by a number of experiments that applying smoothing operators leads to a 
considerable reduction of the computation time while the accuracy remains acceptable. The 
numerical solution was compared with a solution computed with a very small time step on the 
domain used in the experiments. This reference solution may therefore be considered as an almost 
exact solution on this domain. The reduction of the computation time is more or less independent 
of the domain. When the solution tends to a steady state we even obtain a reduction factor of 
about 10. 

2. RIGHT-HAND-SIDE SMOOTHING 

Consider the partial differential equation 

aw/at=Lw(t, x)+c(t, x), 

where L is a linear differential operator with respect to the space variable x and c is a given 
function. This equation, together with its boundary conditions, can be semidiscretized into a 
system of ordinary differential equations (ODES) of the form 

dW/dt = JW(t )  + C( t ) ,  (3) 
with J the Jacobian matrix, C an approximation to c and W an approximation to w at the grid 
points used for the semidiscretization. We shall always assume that this system is stable in the 
sense that the eigenvalues of J are in the non-positive half-plane. In Section 3 we shall see that the 
linearized 3D shallow water equations can be semidiscretized into this form. 

If the system (3) is integrated by an explicit time integrator, then its maximally stable time step 
is limited owing to the usually extremely large magnitude of the spectral radius of J. Therefore the 
time step has to be unrealistically small in order to achieve stability. This restriction is a drawback 
if the variation of the solution in time is so small that accuracy considerations would allow a 
larger time step. To obtain a better-conditioned right-hand-side function we premultiply the 
right-hand side of the original semidiscretization (3), or some part of it, by a smoothing operator S. 
Thus we replace (3) either by 

or by 
dW/dt=S[JW(t)+C(t)]  

dW/dt=SJW(t).+C(t). 
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In (4b) a part of the right-hand side is smoothed. 'The semidiscretization (4a) is particularly 
attractive in problems where it is known that the time derivative of the exact solution, i.e. aw/at, is 
a smooth function of the space variable x (e.g. in problems where a steady state is to be 
approximated). In such cases the right-hand-side function of the semidiscretization (3) is also a 
'smooth' grid function, so that it may be premultiplied by the smoothing operator S without 
much loss of accuracy. 

The maximally stable time step may increase considerably when the explicit time integrator is 
applied to (4) instead of to (3) .  To achieve that the condition of SJ is better than that of J, the 
operator S should strongly damp the high frequencies (stiff components) in the Fourier expansion 
of the vector JW, so that the spectral radius of SJ is substantially less than that of J .  One may 
consider the equations (4) as 'smoothed' or 'preconditioned' semidiscretizations of the original 
equation (2). 

We emphasize that in this paper the right-hand-side function is smoothed instead of the grid 
function W(t)  itself. The latter type of smoothing is often used. However, it may only be applied 
without considerable loss of accuracy if W( t )  itself is a 'smooth' grid function for a fixed value oft. 
This is generally not the case. An example of this latter type of smoothing is the well-known 
Lax-Wendroff m e t h ~ d . ~  

To characterize the effect of right-hand-side smoothing on the accuracy of the initial semi- 
discretization (3) ,  we introduce the order of consistency of smoothing operators. Let A be the mesh 
size; then the smoothing operator S is said to be consistent of order p if S = I + O ( A p )  as A tends to 
zero. Hence S converges to the identity operator I if the grid is refined. 

We remark that the application of right-hand-side smoothing is not restricted to linear ODEs. 
Right-hand-side smoothing can also be applied to more general systems of the form 

dW/dt=F(t, W(t)) (3') 
by replacing it by the smoothed system 

dW/dt =SF(t, W( t ) ) .  

Summarizing, the smoothing operator S should satisfy the following requirements: 

(A) S is consistent of order pb 1. 
(B) The smoothed system is again stable. 
(C) The spectral radius of SJ i s  considerably smaller than that of J. 
(D) The application of the operator S does not require much computational effort. 

(4' 1 

In the following subsections it will be shown that, instead of looking for highly stable 
integration methods, one may equally well apply methods in which the right-hand-side function 
of the system of ODEs ( 3 )  is premultiplied by a smoothing operator S such that the magnitude of 
the spectral radius associated with the right-hand-side function reduces considerably. We 
distinguish smoothing that is dependent on and smoothing that is largely independent of the 
right-hand-side function. The former type of smoothing is based on operator splitting and will be 
discussed in Section 2.1. Smoothing operators that are to a large degree independent of the right- 
hand-side function will be discussed in Section 2.2. 

2.1. Smoothing operators based on operator splitting 

Smoothing operators based on operator splitting are suggested by considering splitting 
methods developed for the time integration of partial differential equations. Our starting point is 
the forward Euler method applied to the semidiscretization (3), which can be described by 

W"+' =W"+z(JW"+c"), ( 5 )  
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where z is the time step and W" and C" denote approximations to W(nt) and C(nt) respectively. 
Let us split the matrix J into 

J = J l + J 2  

and let us replace the forward Euler method (5) by the splitting method 

w + ' - SJ, W"+ ' = W" + z( J, W" + C") 

or, equivalently, 

W"+' =(I-zJ,)-' [ (I+ TJ~)W"+ZC"]. 

This method can be rewritten as 

with 

W"+'=W"+zS(JW"+C"), 

s =( 1 - 7J,)- '. 
The splitting method (7H8) may be interpreted as the forward Euler method applied to the 
system of ODES (4a), which is a 'smoothed' version of the initial semidiscretization (3), with a 
smoothing operator S defined by (8). By an appropriate choice of the matrix J,, this splitting 
method has much better stability characteristics than the forward Euler method (5). For example, 
the choices J, = J and J, = J/2 lead to the A-stable methods of Laasonen (backward Euler) and 
Crank-Nicolson (trapezoidal rule) respectively. Another possibility is to choose J, equal to a 
lower (or upper) triangular matrix. For the two-dimensional shallow water equations such an 
approach has been followed by Fischer' and SieleckL6 In fact, the method developed by De 
Goede' for the linearized shallow water equations may be interpreted as a combination of the 
Crank-Nicolson method and the approach of Sielecki and Fischer. In that paper it was shown 
that the stability of the resulting numerical method improves considerably whereas the com- 
putations can be performed efficiently. 

2.2. Smoothing operators for general vector functions 

The smoothing operators considered in the previous subsection depend strongly on the specific 
form of the right-hand-side function. In this subsection we summarize the main properties of the 
family of smoothing  operator^.^, These operators are largely independent of the particular form 
of the vector function to which they are applied and therefore we shall present the results for the 
general equation ( 4 ) .  We will again assume that the eigenvalues of the Jacobian matrix 
J:= aF/aW are in the non-positive half-plane. 

The smoothing operator S will be chosen of the form S = P(D), where D is a difference matrix 
and the smoothing function P(z) is a polynomial or a rational function yielding explicit or implicit 
smoothing operators, respectively. First we discuss the choice of the matrix D. In our theoretical 
considerations we assume that D is equal to the Jacobian J normalized by its spectral radius, i.e. 

D = J/p( J) .  (9) 
We emphasize that in practice it is generally not attractive to choose D according to (9) and we 
shall employ some cheap approximation to the normalized Jacobian matrix. If D is defined 
according to (9) then the eigenvalues of SJ =P(D)J are given-by p(J)zP(z), where z runs through 
the spectrum of D. 
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2.2.1. Explicit smoothing operators. In the case of explicit smoothing we are looking for a 
polynomial P(z) such that the magnitude of zP(z) is sufficiently small with P(O)= 1 and z either in 
[ - 1,0] or in [ -i, i]. Moreover, the polynomial P(z) will be chosen such that zP(z) remains in the 
non-positive half-plane. It was ~ h o w n ~ . ~  that polynomials of the form 

sin [(2k+ 1)cos- ’ (x)] 
U,,(X) := 2k+l  ’ sin[cos-’(x)] 

P(z)= 9 
u2k[J(1 +z2)1 

minimize the magnitude of zP(z) on the purely imaginary interval [-i,i]. However, if z has 
negative real parts then it may happen that Re{zP(z)} > O ,  causing unstable behaviour. Since we 
shall apply smoothing to vector functions whose Jacobian matrices possess eigenvalues with 
small negative real parts (caused by the vertical diffusion and the bottom friction in the SWEs), we 
require that Re(zP(z)} GO for all values with Re(z} GO (see condition (B)). For this case the 
following theorem defines a family of nearly optimum  polynomial^.^* ’ 
Theorem I 

Let D be defined by (9) and let S=P(D) with P ( z )  defined by 

Tk( 1 + 222) - 1 
T,(X) = COS[ k COS- (x)]. 2k2z2 ’ 

P(z) = 

Then the following assertions hold: 

(a) If Re{z} GO then Re{zP(z)} GO. 
(b) If z is purely imaginary then zP(z) is again purely imaginary and for sufficiently large k its 

maximum is approximately 2/xk. (12) 

Pro05 For a proof of (a) we refer to References 3 and 7. 
(b) We have to find the maximum of IzP(z)I on [ -i, i] or, equivalently, 

The range of 1 +2z2 in (13) is [- 1, 11. On this interval the Chebyshev polynomial T,(1 +2z2) 
satisfies the ‘so-called’ equal ripple property,* which means that it alternatingly assumes equal 
maximum and minimum values. Because of the factor 1/2k2z, let us now assume that the value in 
(13) can be approximated at the smallest value of IzI for which Tk( 1 + 22’) reaches its minimum. 
Thus we require that 

Tk(l + ~ z ~ ) = c o s [  ~ C O S -  ’ (1 + 2z2)] = - 1 

for IzI as small as possible, which yields 

. J[  1 - cos (n/k)] 
4 2  

z =  + 1  

For these values of z we obtain that (13) is bounded by 

2 
k2J[1 -cos (n/k)] nk 

J 2  z- 

for k sufficiently large. For many values of k we verified numerically that the reduction factor 
is close to 2/71k. Therefore we conclude that the approximation applied in this theorem is 
justified. 0 
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An extremely efficient implementation of the smoothing operator of Theorem 1 can be 
obtained by using the following factorization theorem (see also Section 5), which justifies the 
application of these smoothing operators. 

Theorem 2 

Let the matrix D be defined by (U), let S = P(D) with P(z )  defined by (1 l),  let the factor matrices 
Fj be generated by 

F, =I+DZ, Fj+, =(1-2F’j)’, j > O ,  

and let k = 2 4 .  Then S can be factorized by 

S=F,F,-, . . . F , .  (15) 

Proof. For a proof of Theorem 2 we refer to References 3 and 7. 0 

2.2.2. Implicit smoothing operators. In this subsection we will discuss implicit smoothing, i.e. if 
F is the vector to be smoothed then the smoothed vector G is obtained by solving G=S-’F,  
where S-’ is a smoothing operator (see (1)). Implicit smoothing has been applied in References 2 
and 9. 

Theorem 3 

Let S- =P(D) with D a difference matrix and P(z )  defined by 

Then the following assertion holds: if z is purely imaginary then 

IzP(z)I Q I/@. 

ProoJ: This follows immediately from elementary analysis. 0 

As mentioned before, in practice we shall choose D equal to some cheap approximation of the 
normalized Jacobian which satisfies condition (B). In choosing a difference matrix D the 
boundary conditions have to be incorporated in D. This is important to preserve conservation of 
mass. In this paper we shall choose smoothing operators of the form 

0 0 

Dz=L[: 4 - 2  1 . ~ -2  o ) .  1 

The implicit smoothing operator described in Theorem 3 with D2 as in (17) results in the 
solution of a tridiagonal system. Therefore this implicit smoothing operator does not require 
much computational effort. In practice the value of 01 in (16) depends on the time step and on the 
mesh sizes. 

Let us now discuss the order of consistency of the smoothing operator S with DZ defined in (1 7). 
We assume that D2 and P(z )  satisfy the conditions 

DZ=O(AS) as A-0, P(z )  = 1 + O(zzr )  as 2-0, (18) 
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where A denotes the mesh size and r and s are positive integers. Hence S is consistent of order 
p = rs. For example, the smoothing matrix defined by (2) can be generated by P(z )  = 1 + z 2  with D2 
defined by (17) and is second-order-consistent (s = 2, r = 1). When P(z)  is defined by (1 1) and D2 by 
(1 7), it can be easily verified that S is also second-order-consistent. 

Summarizing, if we choose the matrix D2 defined by (17) then the smoothing matrix S=P(D), 
with P(z )  the polynomial (1 1)  or the rational function (16), reduces the magnitude of the spectrum 
associated with the right-hand-side function considerably whereas the spectrum remains in the 
non-positive half-plane. For this choice of D2 the smoothing matrix S is independent of the right- 
hand-side function. 

In Section 4 we shall use both smoothing based on operator splitting and smoothing of general 
vector functions based on the theorems in Section 2.2. 

3. MATHEMATICAL MODEL 

In this section we will describe the mathematical model and the time integrator to which the 
smoothing will be applied. The following symbols are used: 

vertical diffusion coefficient 
Chezy coefficient 
Coriolis term 
bottom stress in x-direction 
surface stress in x-direction 
acceleration due to gravity 
bottom stress in y-direction 
surface stress in y-direction 
total depth (= h + c )  
undisturbed depth of water 
time 
velocity components in x- and y-direction 
a left-handed set of co-ordinates 
wind stress 
density 
elevation above undisturbed depth 
angle between wind direction and positive x-axis. 

We will use a three-dimensional model in sigma co-ordinates in which the advective terms have 
been omitted. This model is described by 

:= --: ( H  j: u do)-$ (H  Jb' u do) ,  

with boundaries 

OGXGL, OGyGB, l>,a>,O. 

Thus the domain is a rectangular basin. Owing to the sigma transformation in the vertical, the 
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domain is constant in time. We have the closed boundary conditions 

4 0 ,  y ,  0, t) = 0, 4L, y ,  0, t ) = O ,  u ( x ,  0,0, t)=O, U( x ,  B,  0, t )  = 0. 

The boundary conditions at the sea surface (a=O) are given by 

- ( A a Z )  = H F , ,  - 
0 

and at the bottom (c= 1) by 

( A,: )  = H G , ,  
0 

The bottom stress is parametrized using a linear law of bottom friction, which is of the form 

F b = g p u d / c z ,  G b  = gpud/c2, 
with tdd and ud the components of the current at some depth near the bottom. The surface stresses 
are expressed as 

F ,  = Wf cos cp, G,= Wfsinrp. 

3.1. Space discretization 

For the space discretization of the equations (19)-(21) the computational domain is covered by 
an nx x ny x ns rectangular staggered grid.' For the approximation of the spatial derivatives, 
second-order central finite differences are used in both the horizontal and vertical directions. We 
use the following notation: U, V and Z are grid functions approximating u, u and [ respectively. 
The Z-points are only specified at the sea surface. Furthermore: A,, is a tridiagonal matrix 
approximating the vertical diffusion term; 0,  is an (nx x ny x ns) x (nx x ny )  matrix (a row of ns 
diagonal matrices of order (nx x ny)' with A C J ~  on the diagonal of the kth submatrix); 0, is an 
(nx x ny) x (nx x ny x ns) matrix (a column of ns identity matrices of order (nx x ny),; F is a four- 
diagonal matrix (due to the grid staggering) of order (nx x ny x ns)', approximating the Coriolis 
term; D, and D, are bidiagonal matrices (one diagonal and one lower diagonal) of order 
(nx x ny)2,  approximating the differential operators d / a x  and dldy respectively; Ex and E, are 
bidiagonal matrices (one diagonal and one upper diagonal) with Ex= -Df and E,= -Dt. The 
matrices D, and Ex differ because of the grid staggering. 

Now the semidiscretized system can be written in the form 

d 
dt 
- W = F( W)=(A +B)W + C, 

The reason for this splitting will become clear in the next sections. The vector C contains the 
components of the wind stress. Note that the integrals in (21) are approximated by 0 , U  and OIV 
respectively. 
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3.2. Time integration 

We start with the following time integrator for (22H23):3 

0 

or, equivalently, 

This method can be written in the form 

(I-tA)W"+' =(I+TB)W"+TC". 

W"+ =W"+T(I-TA)-IF(W"). (24) 
In terms of (7H8) we have that S=(I-zA)- ' .  Thus this time integrator can be considered as a 
method in which the right-hand-side function is preconditioned by the implicit smoothing 
operator (I - zA)- '. It can easily be seen that the components are calculated sequentially (first U, 
then V and finally Z). This is advantageous for both the stability and storage requirements. For 
the two-dimensional shallow water equations a similar approach has been followed by e.g. 
Fischer5 and Sielecki.6 The time step restriction for method (24) is given by' 

where Ax, Ay and A 0  denote the mesh sizes. We remark that the time step in (25) hardly depends 
on the vertical mesh size AG. However, the condition imposed by the horizontal mesh sizes is still 
rather restrictive. Therefore we will add a smoothing operator in the horizontal direction. This 
smoothing operator will be described in the next section. 

4. SMOOTHING 

In this section the stability of method (24) will be improved by a smoothing of general vector 
functions (see Section 2.2). 

First we consider method (24). This method can be written in the form 

W"+ ' =W" + t[I -t(A, + A2)]- ' F(W"), (26) 
where A, + A ,  = A  (see (23)), with 

0 0 

0 : ) .  
Aan 0 0 

A , = [  R Aaa 0 1 ,  A2=[ - F  
0 0  -@,HE, -O,HDy 0 

Method (26) may therefore be interpreted as the forward Euler method in which the right-hand- 
side function has been smoothed by the matrix [I-T(A, +A,)]-'. The vertical terms are treated 
implicitly because the matrix A ,  contains the discretization of the vertical diffusion term. The 
stability condition for this time integrator hardly depends on the vertical mesh size Aa. However, 
the condition imposed by the horizontal mesh sizes is still rather restrictive (see (25)). The 
horizontal terms are treated partly implicitly (A,W"+' in (26)) and partly explicitly (BW" in (24)). 
Hence we add another preconditioning of the right-hand-side function, i.e. a smoothing of general 
vector functions described in Section 2.2. 
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The right-hand-side function of the U-component only contains derivatives in the x-direction 
and will therefore be smoothed in the x-direction only. Similarly, the V-component is only 
smoothed in the y-direction. The Z-component is smoothed in both directions. However, the 
smoothing of the right-hand-side function in two directions is complicated. The precomputation 
of the cheap factor matrices (see Theorem 2) is only feasible in one-dimensional cases. Therefore 
we apply one-dimensional smoothing in the x- and y-direction successively. 

In the x-direction the smoothing matrix has the simple structure 

where S, and S, denote the smoothing matrices for the right-hand-side function of the U- and 
Z-component, respectively. Here S,=P(D,) and S,=P(D,) with P(z) defined by (11) and 

In the y-direction the smoothing matrix has a similar simple structure. Note that D, and D, only 
differ in the first and last row, which is due to the grid staggering and to the boundary conditions. 
The number of different boundary conditions is very limited (open or closed boundaries, u- or 
(-boundaries). The smoothing matrices, including the values in the first and last row, are therefore 
computed in advance. 

The time integration method in which the smoothing based on general vector functions has 
been added can be written in the form 

(28) Wn+l- - W"+T[I-T(A, +SA,)]-'SF(W"), 

with the matrices A, and Az defined in (26) and the smoothing operator S defined in Theorem 1. 
The smoothing operator S appears twice in (28). The first operator S is a result of the fact that the 
components of W are computed sequentially. The second operator S in (28) is clearly a smoothing 
of the right-hand-side function. In cases where the solution becomes stationary (thus F(W)=O) it 
is evident that methods (26) and (28) obtain the same stationary solution. 

The stability condition for method (28) reads (see (14) and (25)) 

Hence the gain factor obtained by the smoothing of general vector functions is nk/2.  

5 .  IMPLEMENTATION OF THE SMOOTHING MATRICES 

In this section we discuss the implementation of the smoothing matrices (I - ?A)- ' and S (see 
(28)). For the U- and V-component the smoothing matrix (I-?A)-' requires the solution of 
nx x ny tridiagonal systems of order ns, which can be computed efficiently.' The smoothing 
operator S can be computed in various ways. The most efficient implementation is based on the 
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factorization property presented in Theorem 2. If the factor matrices of (15) are computed in 
advance, then the evaluation of P(D) only requires q (= 2 log ( k ) )  matrix-vector operations. 

For example, applying Theorem 2 for the matrix D,' (see (27)) we find the factor matrices 

etc. 

Evidently, the matrix-vector multiplications with these essentially three-diagonal factor matrices 
are extremely cheap, especially on vector computers. For example, on the CDC CYBER 205 the 
operations can be performed in two linked triad instructions (except near the boundaries). 

Since the smoothing operator S is applied in the x- and y-direction successively, it consists of a 
sequence of one-dimensional operators. Therefore the smoothing operator can be implemented 
on irregular domains too. However, the bandwidth of the factor matrices Fq is 2 4 +  1. In practice, 
the value of q is at most five. In experiments with irregular domains it might happen that there are 
not enough grid points in the x- or y-direction. In this case we apply the implicit smoothing 
operator defined in Theorem 3, with D2 as in (27), instead of the explicit smoothing operator. 
Thus the application of the smoothing operator is hardly complicated when the domain is 
irregular. 

The implicit smoothing operator requires the solution of a small tridiagonal system with a 
dimension of at  most 24. For the solution of the tridiagonal systems we use the Gaussian 
elimination method. Since these systems are small and the implicit smoothing is only applied in 
narrow regions (where the number of grid points is less than or equal to 24), the computation time 
for the sequential Gaussian elimination method is very limited also on vector and parallel 
computers. 

6. NUMERICAL EXPERIMENTS 

In this section we show for a number of test problems', l o  the effects of smoothing on the stability 
and on the accuracy. In the test problems the water is initially at rest and the motion in the basin 
is generated by a wind stress. Thus a wind-driven circulation is gradually developed. We carry out 
two experiments with a constant wind stress and one with a time-dependent wind stress. In the 
experiments with a constant wind stress we use a rectangular basin with dimensions represent- 
ative of the North Sea and an irregular basin representing the IJsselmeer. The IJsselmeer is the 
largest lake in The Netherlands. 

The following parameter values are used in all experiments: 

f=0.44/3600 (= 1.22 x lo-") 

g=9.81 ms-' 

A" = 0 .0651~  

p =  1025 kgm-3 

cp = 45" (north-eastern wind). 

For the time integration we use method (28). In the experiments we vary the number of smoothing 
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factors in the factorized smoothing operator (see (15)) to investigate the effects of smoothing on 
the stability and on the accuracy. The experiments have been carried out on an ALLIANT FX/4. 
This mini-supercomputer consists of four vector processors. On such a computer we can 
investigate the effect of the smoothing on both vector-parallel computers and scalar computers. 

4 number of smoothing factors 
ERROR-[ 

TOTvpIs total computation time 
SMOvpIs 
The indices VP and S indicate vector-parallel optimization and scalar optimization respectively. 
Thus the experiment is carried out on one processor if only the scalar optimization is used. At the 
end of the integration process the numerical solution for the [-component was compared with a 
reference solution computed on the same grid with z =  30 s. The reference solution may be 
considered as an almost exact solution of our semidiscretized system (22). Thus the accuracy 
results listed in this section represent the error due to the time integration. We experimentally 
determined the maximally stable time step for each value of q. These time steps are in agreement 
with (29) (see Table 11). 

In the first two experiments we used a rectangular basin of 400 by 800 km with Ax= 10 km, 
Ay = 10 km, Ao = 0.25 and h = 65 m. Thus the computations have been performed on a grid 
with nx=41, ny=81 and ns=4. 

In the first experiment we integrated over a period of five days with the constant wind stress 

To represent the results we use the following notation: 

maximal global error for the water elevation compared with a reference solution 
measured at the endpoint t = T 

computation time for the smoothing operator. 

W,= 1.5 kgms-'. (30) 

At that time the steady state has already been reached. 
In this experiment the maximal value for the water elevation is about 1.07 m. The results show 

that the time integration can be performed with much larger time steps when the smoothing 
technique is applied. In this experiment, in which the solution becomes stationary, the accuracy is 
hardly reduced by the smoothing procedure. Only for large q do some errors occur. This is due to 
the fact that for these values of q the steady state has not yet been reached. If the time integration 
is performed over a longer period we obtain the same results for large values of q as for the case 
q = 0. This is in agreement with the theory that a stationary solution should be independent of the 
number of smoothing factors (see Section 4). 

In Table I1 we list the gain factors of the maximally stable time steps compared with the case 
q = 0 (z,,, % 277 s) and we compare them with the theoretical gain factors. Moreover, we list the 
gain factors in computation times. 

Table 1. Test problem with a constant wind stress 

0 270 0.00 1 345.0 0.0 2600.1 00 
1 800 0~002 173.1 20.5 1463.8 243.1 
2 1800 0.008 85-6 17.6 767.3 2 19.7 
3 3600 0.022 46.9 12.8 446.3 169.6 
4 7200 0.055 25.9 8.7 255.8 116.8 
5 14400 0.152 13.7 5.1 142.8 75.0 
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The theoretical gain factor 24-'7c (see (29) with k = 2 4 )  is in agreement with the experimental 
results. The results show a significant reduction in computation time, especially when the 
vector-parallel optimization is used. The overhead due to the smoothing operator is less than a 
factor of two even for large values of q. In the case of the vector-parallel optimization the 
computation time is reduced by about a factor of three due to the vectorization and also by a 
factor of three due to the parallel optimization. 

It is interesting to investigate the effect of smoothing when the solution of a test problem does 
not become stationary. Therefore in the second experiment we introduce a time-dependent wind 
stress (see (30)) 

W, = 1.5 [ 1 + 0.5 sin ( 24 Xzn:hoo)]. 

Now we have a periodically varying (north-eastern) wind with a period of 24 h. We integrated 
over a period of five days. At that time the solution is almost periodic. In the case without 
smoothing in the horizontal we obtained the following maximal water elevations at the south- 
west corner of the basin: 

[=2.106m at t=7*3+iPh,  

with period P = 24 h and i a positive integer. When smoothing is applied we observe that about 
the same maximal and minimal water elevations are reached as in the case without smoothing in 
the horizontal. It seems that the smoothing operator hardly introduces a dissipation error. 
However, some errors in the phase of the periodic solution appear. In Table111 we list the 
maximal global error in the numerical solution for the water elevation measured at the endpoint 
T= 120 h compared with a reference solution computed with z = 30 s. 

The results show that the error due to the smoothing operator is even smaller than the error 
due to the larger time steps. For example, in the case q = 2 the error due to the larger time steps 
(i.e. 0.029 m) is larger than the error due to the smoothing (i.e. GO023 m). Thus, if a fully implicit 
method had been used, the accuracy would also decrease for large time steps. 

Table 11. Gain factors 

q = l  q=2 q = 3  q=4 q = 5  

Theoretically (= 24- n for q > 0) 3.1 6.3 12.6 25.1 50.3 
Experimentally (see Table I) 2.9 6.5 13.0 25.9 51.9 
In computation time (VP) 2.0 4.0 1.4 13.3 25.2 
In computation time (S) 1.8 3.4 5.8 10.2 18.2 

Table 111. Test problem with a time-dependent wind stress 

0 210 0.008 
1 270 0.008 120 0.014 
2 270 0.023 1800 0.052 
3 210 0.061 3600 0.139 
4 270 0.193 7200 0.463 
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In the third experiment we investigate the efficiency of the smoothing operators on an irregular 
basin, i.e. the geometry of the IJsselmeer. Figure 1 shows the geometry of the IJsselmeer used in 
this experiment. We chose A x  = Ay = 1.0 km and h = 6.5 m. The IJsseImeer was represented by 
about 1100 grid points in the horizontal direction. The vertical representation was made by five 
layers of the same depth. We integrated over a period of one day with the same constant wind 
stress as in the first experiment (see (30)). At the endpoint T=24 h we compared the numerical 
solution for the [-component with a reference solution computed with z= 10 s. Without smooth- 
ing the maximally stable time step is about 87 s. In Table IV we list the results. 

In this experiment the maximal value for the water elevation is about 0.79 m. The results in this 
experiment are comparable with the results on a rectangular domain (see Table I). The accuracy 

ENK 

0 LELYSTAD 

Figure 1 .  The geometry of the IJsselmeer 

Table IV. IJsselrneer problem with a constant wind stress 

4 

80 
80 
80 
80 

270 
600 

1 200 

ERROR-( TOT, 
(m) (s) 

O.Oo0 200.3 
0-00 1 280.4 
0009 305.4 
0.02 1 339.4 

0.00 1 86.0 
0.009 44.4 
0.030 24.8 

0 0  
22.1 
48.9 
17.5 

6.6 
9 4  
6 9  
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is hardly reduced by the smoothing procedure. Moreover, the overhead due to the smoothing 
operator is even less than in the experiment with a rectangular domain. This is due to the fact that 
the smoothing matrix has been computed on the irregular domain representing the Ijsselmeer, 
whereas the computations that do not involve the smoothing have been performed on a 
surrounding rectangular domain. On vector-parallel computers this is in general an efficient 
approach because direct addressing can be used in most cases. The efficiency depends on the 
number of dummy grid points in the surrounding rectangle compared with the number of grid 
points in the irregular (physical) domain. However, regardless of the implementation used, it may 
be concluded that the smoothing operator can be implemented efficiently on both regular and 
irregular domains. 

7. CONCLUSIONS 

In this paper we applied right-hand-side smoothing to improve the stability of a time integrator 
for the linearized 3D shallow water equations. We started with the semi-implicit time integrator 
developed in Reference 1. It turned out that this method may be considered as a method in which 
the right-hand-side function is premultiplied by an implicit smoothing operator. The vertical 
terms were treated implicitly. Since the number of points in the vertical direction may be very 
small, explicit smoothing cannot be applied. Moreover, the stability condition imposed by the 
vertical terms is often the most restrictive one. Therefore we preferred an implicit treatment of the 
vertical terms. 

In the horizontal direction we can choose between explicit and implicit smoothing of vector 
functions. In this paper we applied explicit smoothing whenever possible. Only in cases where 
explicit smoothing could not be applied (i.e. in narrow regions) did we use implicit smoothing. It 
turned out that this approach is efficient, especially on vector-parallel computers. 

Owing to the smoothing in the horizontal direction, the maximally stable time step increased 
considerably while the accuracy decreased only slightly. In our wind-driven test problems the 
maximally stable time step increased by a factor of more than 10 (in the case q=3)  while the 
accuracy was still acceptable. In this case the overhead in computation time due to the smoothing 
was only about 30%. Moreover, the error due to the large time steps was more or less comparable 
with the error introduced by the smoothing. Thus also for fully implicit methods the accuracy 
would decrease for such large time steps. 
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